GPU-accelerated element-free reverse-time migration with Gauss points partition
نویسندگان
چکیده
منابع مشابه
GPU Accelerated Finite Element Assembly with Runtime Compilation
In recent years, high performance scientific computing on graphics processing units (GPUs) have gained widespread acceptance. These devices are designed to offer massively parallel threads for running code with general purpose. There are many researches focus on finite element method with GPUs. However, most of the works are specific to certain problems and applications. Some works propose meth...
متن کاملReverse Time Migration with Optimal Checkpointing
The optimal checkpointing algorithm (Griewank and Walther, 2000) minimizes the computational complexity of the adjoint state method. Applied to reverse time migration, optimal checkpointing eliminates (or at least drastically reduces) the need for disk i/o, which is quite extensive in more straightforward implementations. This paper describes optimal checkpointing in a form which applies both t...
متن کاملElastic reverse-time migration with OBS multiples
Receiver-side water-column multiples acquired with ocean-bottom seismic sensors can be used for elastic imaging of the subsurface, which can provide additional information relative to more conventional acoustic imaging. In this paper, we generalize the procedures for elastic migration using water-column multiples. We first separate receiver-side water-column multiples from primaries in recorded...
متن کاملA GPU-accelerated Boundary Element Method and Vortex Particle Method
Vortex particle methods, when combined with multipole-accelerated boundary element methods (BEM), become a complete tool for direct numerical simulation (DNS) of internal or external vortex-dominated flows. In previous work, we presented a method to accelerate the vorticity-velocity inversion at the heart of vortex particle methods by performing a multipole treecode N-body method on parallel gr...
متن کاملHardware-Oriented Multigrid Finite Element Solvers on GPU-Accelerated Clusters
The accurate simulation of real-world phenomena in computational science is often based on an underlying mathematical model comprising a system of partial differential equations (PDEs). Important research fields that we pursue in this setting are computational solid mechanics and computational fluid dynamics (CSM and CFD, see Section 3). Practical applications range from material failure tests,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysics and Engineering
سال: 2018
ISSN: 1742-2132,1742-2140
DOI: 10.1088/1742-2140/aaa0a9